续:压力传感器原理及应用-称重技术(一)
根据平行板电容器的电容量表达式C=εA/d (3-9)
式中为电容极板间介质的介电常数;A为两平行板相对面积;d为两平行板间距。
由上式可知,改变A、d、其中任意一个参数都可以使电容量发生变化,在实际测量中,大多采用保持其中两个参数不变,而仅改变A或d一个参数的方法,把参数的变化转换为电容量的变化。因此,电容量的变化与被测参数的大小成比例。
①差动变极距式电容压力传感器
改变电容两平行板间距d的测量方式有较高的灵敏度,但当位移较大时非线性严重。采用差动电容法可以改善非线性、提高灵敏度、并可减小因ε受温度影响引起的不稳定性。
图3-12是一种电容式差压传感器示意图。左右对称的不锈钢基座内有玻璃绝缘层,其内侧的凹形球面上除边缘部分外镀有金属膜作为固定电极,中间被夹紧的弹性膜片作为可动测量电极,左、右固定电极和测量电极经导线引出,从而组成了两个电容器。不锈钢基座和玻璃绝缘层中心开有小孔,不锈钢基座两边外侧焊上了波纹密封隔离膜片,这样测量电极将空间分隔成左、右两个腔室,其中充满硅油。当隔离膜片感受两侧压力的作用时,通过硅油将差压传递到弹性测量膜片的两侧从而使膜片产生位移。电容极板间距离的变化,将引起两侧电容器电容值的改变。
对于差动平板电容器,其电容变化与板间距离变化的关系可表示为:
C0=△d/d0 (3-10)
式中 C0为初始电容值;d0为极板间初始距离;△d为距离变化量。
此电容量的变化经过适当的变换器电路,可以转换成反映被测差压的标准电信号输出。
这种传感器结构坚实,灵敏度高,过载能力大;精度高,其精确度可达±0.25%~±0.05%;可以测量压力和差压。
②变面积式电容压力传感器
下图所示为一种变面积式电容压力传感器。被测压力作用在金属膜片上,通过中心柱和支撑簧片,使可动电极随簧片中心位移而动作。可动电极与固定电极均是金属同心多层圆筒,断面呈梳齿形,其电容量由两电极交错重叠部分的面积所决定。固定电极与外壳之间绝缘,可动电极则与外壳导通。压力引起的极间电容变化由中心柱引至适当的变换器电路,转换成反映被测压力的标准电信号输出。
金属膜片为不锈钢材质,膜片后设有带波纹面的挡块,限制膜片过大变形,以保护膜片在过载时不至于损坏。膜片中心位移不超过0.3mm,膜片背面为无硅油的封闭空间,不与被测介质接触,可视为恒定的大气压,故仅适用于压力测量,而不能测量压差。
其特点是结构简单,灵敏度高,动态响应快,但是由于电荷泄漏难于避免,不适宜静态力的测量 (电容式力传感器的结构原理)。
前面章节介绍过压电式传感器的原理和压电式振动加速度传感器,测力传感器的结构类似。其特点是体积小,动态响应快,但是也存在电荷泄漏,不适宜静态力的测量。使用中应防止承受横向力和施加予紧力。
电容式压力传感器
在矩形的特殊弹性元件上,加工若干个贯通的圆孔,每个圆孔内固定两个端面平行的丁字形电极,每个电极上贴有铜箔,构成由多个平行板电容器并联组成的测量电路。在力F作用下,弹性元件变形使极板间矩发生变化,从而改变电容量,如左图(电容式力传感器)所示。
利用电容敏感元件将被测压力转换成与之成一定关系的电量输出的压力传感器。它一般采用圆形金属薄膜或镀金属薄膜作为电容器的一个电极,当薄膜感受压力而变形时,薄膜与固定电极之间形成的电容量发生变化,通过测量电路即可输出与电压成一定关系的电信号。电容式压力传感器属于极距变化型电容式传感器,可分为单电容式压力传感器和差动电容式压力传感器。
单电容式压力传感器 它由圆形薄膜与固定电极构成。薄膜在压力的作用下变形,从而改变电容器的容量,其灵敏度大致与薄膜的面积和压力成正比而与薄膜的张力和薄膜到固定电极的距离成反比。另一种型式的固定电极取凹形球面状,膜片为周边固定的张紧平面,膜片可用塑料镀金属层的方法制成(图1)。这种型式适于测量低压,并有较高过载能力。还可以采用带活塞动极膜片制成测量高压的单电容式压力传感器。这种型式可减小膜片的直接受压面积,以便采用较薄的膜片提高灵敏度。它还与各种补偿和保护部以及放大电路整体封装在一起,以便提高抗干扰能力。这种传感器适于测量动态高压和对飞行器进行遥测。单电容式压力传感器还有传声器式(即话筒式)和听诊器式等型式。
差动电容式压力传感器 它的受压膜片电极位于两个固定电极之间,构成两个电容器(图2)。在压力的作用下一个电容器的容量增大而另一个则相应减小,测量结果由差动式电路输出。它的固定电极是在凹曲的玻璃表面上镀金属层而制成。过载时膜片受到凹面的保护而不致破裂。差动电容式压力传感器比单电容式的灵敏度高、线性度好,但加工较困难(特别是难以保证对称性),而且不能实现对被测气体或液体的隔离,因此不宜于工作在有腐蚀性或杂质的流体中。
五、压磁式压力传感器
压磁式压力传感器的原理,某些铁磁材料受到外力作用时,引起导磁率变化现象,称作压磁效应。其逆效应称作磁致伸缩效应。硅钢受压缩时,其导磁率沿应力方向下降,而沿应力的垂向增加;在受拉伸时,导磁率变化正好相反。如果在硅钢叠片上开有4个对称的通孔,孔中分别绕有互相垂直的两个线圈,如左图(图压磁元件工作原理)所示,一个线圈为励磁绕组,另一个为测量绕组。无外力作用时,磁力线不和测量绕组交链,测量绕组不产生感应电势。当受外力作用时,磁力线分布发生变化,部份磁力线和测量绕组交链,并在绕组中产生感应电势,且作用力愈大,感应电势愈大。压磁式压力传感器的典型代表是压磁式转矩传感器。
5.1 压磁式转矩传感器原理。
铁磁材料制成的转轴,具有压磁效应,在受转矩作用后,沿拉应力+ 方向磁阻减小,沿压应力- 方向磁阻增大。在转轴附近相互垂直放置两个铁芯线圈A、B,使其开口端与被测转轴保持1~2mm的间隙,从而由导磁的轴将磁路闭合,如下图所示,AA沿轴向,BB垂直于轴向。在铁芯线圈A中通以50 Hz的交流电,形成交变磁场。转轴未受转矩作用时,其各向磁阻相同,BB方向正好处于磁力线的等位中心线上,因而铁芯B上的绕组不会产生感应电势。当转轴受转矩作用时,其表面上出现各向异性磁阻特性,磁力线将重新分布,而不再对称,因此在铁芯B的线圈上产生感应电势。转矩愈大,感应电势愈大,在一定范围内, 感应电势与转矩成线性关系。这样就可通过测量感应电势e来测定轴上转矩的大小。
压磁式转矩传感器是非接触测量,使用方便,结构简单可靠,基本上不受温度影响和转轴转速限制,而且输出电压很高(可达10V)。
测量力时可以直接在被测对象上布片组桥,也可以在弹性元件上布片组桥,使力通过弹性元件传到应变片。常用的弹性元件有柱式、梁式、环式、轮辐等多种形式。
, ①柱式弹性元件 通过柱式弹性元件表面的拉(压)变形测力。应变片的粘贴和电桥的连接应尽可能消除偏心和弯矩的影响,一般将应变片对称地贴在应力均匀的圆柱表面中部。柱式力传感器可以测量0.1~3000吨的载荷,常用于大型轧钢设备的轧制力测量。
②梁式弹性元件 类型有等截面梁、等强度梁和双端固定梁等,通过梁的弯曲变形测力,结构简单,灵敏度较高。
③环式弹性元件 分为圆环式和八角环式。它也是通过元件的弯曲变形测力,结构较紧凑。实际应用如切削测力仪。
④轮辐式弹性元件 轮幅式弹性元件受力状态可分为拉压、弯曲和剪切。前两类测力弹性元件经常采用,精度和稳定性已达到一定水平,但是安装条件变化或受力点移动,会引起难于估计的误差。剪切受力的弹性元件具有对加载方式不敏感、抗偏载、侧向稳定、外形矮等特点。
其特点是硅钢材料受力面加大后,可以测量数千吨的力,且输出电势较大,甚至只需滤波整流,无需放大处理。常用于大型轧钢机的轧制力测量。使用中应防止因侧向力干扰而破坏硅钢的叠片结构(压磁式测力装置的工作原理)。
六、差动变压器式测力传感器
把被测的非电量变化转换为线圈互感量变化的传感器称为互感式传感器。这种传感器是根据变压器的基本原理制成的, 并且次级绕组都用差动形式连接, 故称差动变压器式传感器。
1、差动变压器式测力传感器基本介绍
差动变压器结构形式较多, 有变隙式、变面积式和螺线管式等, 但其工作原理基本一样。非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。
2、差动变压器式传感器测量电路
差动变压器输出的是交流电压, 若用交流电压表测量, 只能反映衔铁位移的大小, 而不能反映移动方向。另外, 其测量值中将包含零点残余电压。为了达到能辨别移动方向及消除零点残余电压的目的, 实际测量时, 常常采用差动整流电路和相敏检波电路。
2.1. 差动整流电路
这种电路是把差动变压器的两个次级输出电压分别整流, 然后将整流的电压或电流的差值作为输出, 图 6.1 给出了几种典型电路形式。 图中(a)、(c)适用于交流负载阻抗, (b)、(d)适用于低负载阻抗, 电阻R0用于调整零点残余电压。
下面结合图 6.1(c), 分析差动整流工作原理。
从图6.1(c)电路结构可知, 不论两个次级线圈的输出瞬时电压极性如何, 流经电容C1的电流方向总是从 2 到 4, 流经电容C2的电流方向从6到8, 故整流电路的输出电压为
U2=U24-U68(4 - 28)
当衔铁在零位时, 因为U24=U68 , 所以U2=0; 当衔铁在零位以上时, 因为U24>U68, 则U2>0; 而当衔铁在零位以下时, 则有U24则U2<0 。差动整流电路具有结构简单, 不需要考虑相位调整和零点残余电压的影响, 分布电容影响小和便于远距离传输等优点, 因而获得广泛应用。
2.2相敏检波电路
电路如图6.2(c) 所示。VD1、VD2、VD3、 VD4 为四个性能相同的二极管, 以同一方向串联成一个闭合回路, 形成环形电桥。 输入信号u2(差动变压器式传感器输出的调幅波电压)通过变压器T1加到环形电桥的一个对角线。 参考信号u0通过变压器T2加入环形电桥的另一个对角线。 输出信号uL从变压器T1与T2的中心抽头引出。平衡电阻R起限流作用, 避免二极管导通时变压器T2的次级电流过大。RL为负载电阻。u0的幅值要远大于输入信号u2的幅值, 以便有效控制四个二极管的导通状态, 且u0和差动变压器式传感器激磁电压u1由同一振荡器供电, 保证二者同频、同相(或反相)。
由图 6.2(a)、(c)、 (d) 可知, 当位移Δx > 0时, u2与u0同频同相, 当位移Δx< 0时, u2与u0 同频反相;Δx> 0时, u2与u0为同频同相, 当u2与u0均为正半周时, 见图 4 - 15(a), 环形电桥中二极管VD1、VD4截止, VD2、VD3导通, 则可得图 4 - 15(b)的等效电路。
其特点是工作温度范围较宽,为了减小横向力或偏心力的影响,传感器的高径比应较小。(差动变压器式测力传感器的工作原理)
3、典型差动变压器式传感器型号
七、谐振式压力传感器
谐振式压力传感器分为两类:振筒式谐振压力传感器和振膜式谐振压力传感器。
1、振筒式谐振压力传感器
振筒式压力传感器的感压元件是一个薄壁金属圆筒,圆柱筒本身具有一定的固有频率,当筒壁受压张紧后,其刚度发生变化,固有频率相应改变。
传感器由振筒组件和激振电路组成,如图3-14所示。振筒用低温度系数的恒弹性材料制成,一端封闭为自由端,开口端固定在基座上,压力由内侧引入。绝缘支架上固定着激振线圈和检测线圈,二者空间位置互相垂直,以减小电磁耦合。激振线圈使振筒按固有的频率振动,受压前后的频率变化可由检测线圈检出。
此种仪表体积小,输出频率信号,重复性好,耐振;精确度高,其精确度为±0.1%和±0.01%;适用于气体测量。
2、振膜式谐振压力传感器
振膜式压力传感器结构如图(a)所示。振膜为一个平膜片,且与环形壳体做成整体结构,它和基座构成密封的压力测量室,被测压力 p经过导压管进入压力测量室内。参考压力室可以通大气用于测量表压,也可以抽成真空测量绝压。装于基座顶部的电磁线圈作为激振源给膜片提供激振力,当激振频率与膜片固有频率一致时,膜片产生谐振。没有压力时,膜片是平的,其谐振频率为 f0;当有压力作用时,膜片受力变形,其张紧力增加,则相应的谐振频率也随之增加,频率随压力变化且为单值函数关系。
在膜片上粘贴有应变片,它可以输出一个与谐振频率相同的信号。此信号经放大器放大后,再反馈给激振线圈以维持膜片的连续振动,构成一个闭环正反馈自激振荡系统。如图(b)所示。
八、光导纤维压力传感器
光导纤维压力传感器与传统压力传感器相比,有其独特的优点:利用光波传导压力信息,不受电磁干扰,电气绝缘好,耐腐蚀,无电火花,可以在高压、易燃易爆的环境中测量压力、流量、液位等。它灵敏高度,体积小,可挠性好,可插入狭窄的空间是进行测量,因此而得到重视,并且得到迅速发展。
完.